Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal inequalities for bounding Toader mean by arithmetic and quadratic means

In this paper, we present the best possible parameters [Formula: see text] and [Formula: see text] such that the double inequality [Formula: see text] holds for all [Formula: see text] and [Formula: see text] with [Formula: see text], and we provide new bounds for the complete elliptic integral [Formula: see text] [Formula: see text] of the second kind, where [Formula: see text], [Formula: see ...

متن کامل

Optimal Bounds for Toader Mean in Terms of Arithmetic and Contraharmonic Means

We find the greatest value α1 and α2 , and the least values β1 and β2 , such that the double inequalities α1C(a,b)+(1−α1)A(a,b) < T (a,b) < β1C(a,b)+(1−β1)A(a,b) and α2/A(a,b)+(1−α2)/C(a,b) < 1/T (a,b) < β2/A(a,b)+(1−β2)/C(a,b) hold for all a,b > 0 with a = b . As applications, we get new bounds for the complete elliptic integral of the second kind. Here, C(a,b) = (a2 +b2)/(a+b) , A(a,b) = (a+b...

متن کامل

Optimal convex combination bounds of geometric and Neuman means for Toader-type mean

In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...

متن کامل

A Double Inequality for the Combination of Toader Mean and the Arithmetic Mean in Terms of the Contraharmonic Mean

We find the greatest value λ and the least value μ such that the double inequality C(λa + (1 − λ)b, λb+ (1 − λ)a) < αA(a, b) + (1 − α)T (a, b) < C(μa + (1 − μ)b, μb+ (1− μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a 6= b, where C(a, b), A(a, b), and T (a, b) denote respectively the contraharmonic, arithmetic, and Toader means of two positive numbers a and b.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2017

ISSN: 2008-1898,2008-1901

DOI: 10.22436/jnsa.011.01.11